The Chemically Modified Leaves of Pteris vittata as Efficient Adsorbent for Zinc (II) Removal from Aqueous Solution

Author:

Khan Qaiser,Zahoor MuhammadORCID,Salman Syed Muhammad,Wahab Muhammad,Talha Muhammad,Kamran Abdul Waheed,Khan Yousaf,Ullah RiazORCID,Ali Essam A.ORCID,Shah Abdul BariORCID

Abstract

High concentrations of zinc along with other metals are released by steel mills, and this has a number of negative effects on organism health; most notably, neurological symptoms have been recorded with a high risk of brain atrophy. In the current study, Zn (II) was eliminated from steel mill effluent, utilizing chemically processed Pteris vittata plant leaves as a biosorbent. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and energy dispersive X-ray spectroscopy (EDX) were applied to characterize the chemically modified Pteris vittata leaves, from now onward abbreviated as CMPVL. In order to identify the ideal parameter, batch studies were conducted varying a single parameter affecting the biosorption process at a time, including variations in temperature (293–323 K), initial metal concentration (20–300 mg/L), and adsorbent doses (0.01–0.12 g), pH (2–8), as well as contact time (10–140 min). To describe the isothermal experimental results, a number of models were used including Freundlich, Langmuir, Temkin, Jovanovich, and Harkins–Jura. Among these models, the Langmuir model provided a significant fit to the isotherm data with an R2 of 0.9738. The kinetics data were fitted to the pseudo first order, pseudo second order, power function, Natarajan–Khalaf, and intraparticle diffusion models. The highest R2 (0.9976) value was recorded for the pseudo second order model. Using the Langmuir isotherm, the highest uptake ability (84.74 mg/g) of Zn was recorded. The thermodynamic investigation, carried out at various temperatures, led to the conclusion that the biosorption process was exothermic and spontaneous in nature. The CMPVL, thus, has the potential to function well as an alternative to existing carbon-based adsorbents in the effective elimination of zinc from aquatic environments.

Funder

King Saud University Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3