Influence of Carbonization Conditions on Structural and Surface Properties of K-Doped Mo2C Catalysts for the Synthesis of Methyl Mercaptan from CO/H2/H2S

Author:

Zheng Xiangqian12,Ai Tianhao13,Hu Yuhong4,Xu Zhizhi34,Li Yubei1,Jiang Huan1,Luo Yongming13

Affiliation:

1. Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China

2. Xishuangbanna Prefecture Comprehensive Inspection Center of Quality and Technical Supervision, Jinghong 666100, China

3. Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China

4. Yunnan Research Academy of Eco-Environmental Sciences, Kunming 650093, China

Abstract

The cooperative transition of sulfur-containing pollutants of H2S/CO/H2 to the high-value chemical methyl mercaptan (CH3SH) is catalyzed by Mo-based catalysts and has good application prospects. Herein, a series of Al2O3-supported molybdenum carbide catalysts with K doping (denoted herein as K-Mo2C/Al2O3) are fabricated by the impregnation method, with the carbonization process occurring under different atmospheres and different temperatures between 400 and 600 °C. The CH4-K-Mo2C/Al2O3 catalyst carbonized by CH4/H2 at 500 °C displays unprecedented performance in the synthesis of CH3SH from CO/H2S/H2, with 66.1% selectivity and a 0.2990 g·gcat−1·h−1 formation rate of CH3SH at 325 °C. H2 temperature-programmed reduction, temperature-programmed desorption, X-ray diffraction and Raman and BET analyses reveal that the CH4-K-Mo2C/Al2O3 catalyst contains more Mo coordinatively unsaturated surface sites that are responsible for promoting the adsorption of reactants and the desorption of intermediate products, thereby improving the selectivity towards and production of CH3SH. This study systematically investigates the effects of catalyst carbonization and passivation conditions on catalyst activity, conclusively demonstrating that Mo2C-based catalyst systems can be highly selective for producing CH3SH from CO/H2S/H2.

Funder

National Natural Science Foundation of China

Key Project of Natural Science Foundation of Yunnan Province

Applied Basic Research Foundation of Yunnan Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3