Mitigation of Deoxynivalenol (DON)- and Aflatoxin B1 (AFB1)-Induced Immune Dysfunction and Apoptosis in Mouse Spleen by Curcumin

Author:

Muhmood Azhar123,Liu Jianxin123,Liu Dandan123ORCID,Liu Shuiping123,Azzam Mahmoud M.4ORCID,Junaid Muhammad Bilawal5,Hou Lili123,Le Guannan123,Huang Kehe123

Affiliation:

1. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

2. Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China

3. MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

4. Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia

5. Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

In the context of the potential immunomodulatory properties of curcumin in counteracting the detrimental effects of concurrent exposure to Deoxynivalenol (DON) and Aflatoxin B1 (AFB1), a comprehensive 28-days trial was conducted utilizing 60 randomly allocated mice divided into four groups. Administration of curcumin at a dosage of 5 mg/kg body weight in conjunction with DON at 0.1 mg/kg and AFB1 at 0.01 mg/kg body weight was undertaken to assess its efficacy. Results indicated that curcumin intervention demonstrated mitigation of splenic structural damage, augmentation of serum immunoglobulin A (IgA) and immunoglobulin G (IgG) levels, elevation in T lymphocyte subset levels, and enhancement in the mRNA expression levels of pro-inflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-6. Furthermore, curcumin exhibited a suppressive effect on apoptosis in mice, as evidenced by decreased activity of caspase-3 and caspase-9, reduced expression levels of pro-apoptotic markers Bax and Cytochrome-c (Cyt-c) at both the protein and mRNA levels, and the maintenance of a balanced expression ratio of mitochondrial apoptotic regulators Bax and Bcl-2. Collectively, these findings offer novel insights into the therapeutic promise of curcumin in mitigating immunosuppression and apoptotic events triggered by mycotoxin co-exposure.

Funder

Joint Key Funds of the National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3