Affiliation:
1. Hamilton Institute, Eolas Building, Maynooth University, W23 F2H6 Maynooth, Kildare, Ireland
2. School of Biology and Environmental Science, University College Dublin, D04 C1P1 Dublin, Ireland
Abstract
Mycotoxins, toxic secondary metabolites produced by certain fungi, pose significant threats to global food safety and public health. These compounds can contaminate a variety of crops, leading to economic losses and health risks to both humans and animals. Traditional lab analysis methods for mycotoxin detection can be time-consuming and may not always be suitable for large-scale screenings. However, in recent years, machine learning (ML) methods have gained popularity for use in the detection of mycotoxins and in the food safety industry in general due to their accurate and timely predictions. We provide a systematic review on some of the recent ML applications for detecting/predicting the presence of mycotoxin on a variety of food ingredients, highlighting their advantages, challenges, and potential for future advancements. We address the need for reproducibility and transparency in ML research through open access to data and code. An observation from our findings is the frequent lack of detailed reporting on hyperparameters in many studies and a lack of open source code, which raises concerns about the reproducibility and optimisation of the ML models used. The findings reveal that while the majority of studies predominantly utilised neural networks for mycotoxin detection, there was a notable diversity in the types of neural network architectures employed, with convolutional neural networks being the most popular.
Funder
Department of Agriculture, Food, and the Marine (DAFM) and the Department of Agriculture, Environment, and Rural Affairs
SFI Centre for Research Training in Foundations of Data Science
SFI Research Centre award
Reference112 articles.
1. The World Health Organization (WHO) (2023, November 05). Food Safety. The World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/mycotoxins.
2. Mavrommatis, A., Giamouri, E., Tavrizelou, S., Zacharioudaki, M., Danezis, G., Simitzis, P.E., Zoidis, E., Tsiplakou, E., Pappas, A.C., and Georgiou, C.A. (2021). Impact of mycotoxins on animals’ oxidative status. Antioxidants, 10.
3. Mycotoxins in a changing global environment—A review;Johnson;Food Chem. Toxicol.,2014
4. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment;Liu;Environ. Health Perspect.,2010
5. Decision support system for integrated management of mycotoxins in feed and food supply chains;Liu;World Mycotoxin J.,2022