An Approach for Detecting Feasible Paths Based on Minimal SSA Representation and Symbolic Execution

Author:

Marashdih Abdalla WasefORCID,Zaaba Zarul Fitri,Suwais KhaledORCID

Abstract

Static analysis is one of the techniques used today to analyze source codes and minimize the issue of software vulnerability. Static analysis has the ability to observe all possible software paths in an application through the scrutiny of a web application’s source code. Among those paths, some may be considered feasible paths, which refer to any paths that the test cases can execute. The detection of feasible paths in the results of a static analysis helps to minimize the false positive rate. However, the detection of feasible paths can be challenging, especially for programs that have multiple conditions in the same branch. The aim is to ensure that each feasible path is detected only once (not duplicated). This paper proposes an approach based on minimal static single assignment (MSSA) form and symbolic execution to detect feasible paths. The proposed approach starts by converting the source code into an abstract syntax tree (AST), followed by converting the AST to minimal SSA representation, which helps to decrease the number of instructions in the SSA form. An algorithm was built to examine all of the instructions of the SSA form, identify whole paths in the source code, and extract constraints along each path. A path weight method (PWM) is proposed in this work to avoid detecting duplicated feasible paths. The satisfiability modulo theory (SMT) solver was used to check the satisfiability of each path condition. The proposed approach was tested on seven well-known test programs that have been used in related studies and 10 large scale programs. The experimental results indicate that the proposed method (PWM) can avoid detecting duplicated feasible paths, and the proposed approach reduced the time required for generating the paths compared to that in related studies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A vulnerability detection method based on sparse value flow graphs;Proceedings of the 2023 2nd International Conference on Networks, Communications and Information Technology;2023-06-16

2. An Enhanced Static Taint Analysis Approach to Detect Input Validation Vulnerability;Journal of King Saud University - Computer and Information Sciences;2023-02

3. Predicting input validation vulnerabilities based on minimal SSA features and machine learning;Journal of King Saud University - Computer and Information Sciences;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3