Abstract
In this study, a Reynolds averaged Navier-Stokes solver is used for prediction of the propeller performance in open-water conditions at different Reynolds numbers ranging from 104 to 107. The k−ω SST turbulence model and the γ−R˜eθt correlation-based transition model are utilised and results compared for a conventional marine propeller. First, the selection of the turbulence inlet quantities for different flow regimes is discussed. Then, an analysis of the iterative and discretisation errors is made. This work is followed by an investigation of the predicted propeller flow at variable Reynolds numbers. Finally, the propeller scale-effects and the influence of the turbulence and transition models on the performance prediction are discussed. The variation of the flow regime showed an increase in thrust and decrease in torque for increasing Reynolds number. From the comparison between the turbulence model and the transition model, different flow solutions are obtained for the Reynolds numbers between 105 and 106, affecting the scale-effects prediction.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference52 articles.
1. Untersuchung der Propellergrenzschichströmung und der Einfluss der Reibung auf die Propellerkenngrössen (Investigation of Propeller Boundary-Layer Flow and Friction Effects on Propeller Characteristics);Meyne,1972
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献