The Efficiency Prediction of the Laser Charging Based on GA-BP

Author:

Wang ChengminORCID,Li Guangji,Ali Imran,Zhang Hongchao,Tian Han,Lu Jian

Abstract

In IoT applications, energy supply, especially wireless power transfer (WPT), has attracted the most attention in the relevant literature. In this paper, we present a new approach to laser irradiance solar cell panels and predicting energy transfer efficiency. From the previous experimental datasets, it has been discovered that in the laser charging (LC) process, temperature has a great impact on the efficiency, which is highly correlated with the laser intensity. Then, based on artificial neural network (ANN), we set the above temperature and laser intensity as inputs, and the efficiency as output through back propagation (BP) algorithm, and use neural network and BP to train and modify the network parameters to approach the real efficiency value. We also propose the genetic algorithm (GA) to optimize the learning rate of the BP, which achieved slightly superior results. The results of the experiment indicate that the prediction method reaches a high accuracy of about 99.4%. The research results in this paper provide an improved solution for the LC application, particularly the energy supply of IoT devices or small electronic devices through WPT.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3