Probabilistic Mapping and Spatial Pattern Analysis of Grazing Lawns in Southern African Savannahs Using WorldView-3 Imagery and Machine Learning Techniques

Author:

Awuah Kwame T.ORCID,Aplin PaulORCID,Marston Christopher G.ORCID,Powell IanORCID,Smit Izak P. J.

Abstract

Savannah grazing lawns are a key food resource for large herbivores such as blue wildebeest (Connochaetes taurinus), hippopotamus (Hippopotamus amphibius) and white rhino (Ceratotherium simum), and impact herbivore densities, movement and recruitment rates. They also exert a strong influence on fire behaviour including frequency, intensity and spread. Thus, variation in grazing lawn cover can have a profound impact on broader savannah ecosystem dynamics. However, knowledge of their present cover and distribution is limited. Importantly, we lack a robust, broad-scale approach for detecting and monitoring grazing lawns, which is critical to enhancing understanding of the ecology of these vital grassland systems. We selected two sites in the Lower Sabie and Satara regions of Kruger National Park, South Africa with mesic and semiarid conditions, respectively. Using spectral and texture features derived from WorldView-3 imagery, we (i) parameterised and assessed the quality of Random Forest (RF), Support Vector Machines (SVM), Classification and Regression Trees (CART) and Multilayer Perceptron (MLP) models for general discrimination of plant functional types (PFTs) within a sub-area of the Lower Sabie landscape, and (ii) compared model performance for probabilistic mapping of grazing lawns in the broader Lower Sabie and Satara landscapes. Further, we used spatial metrics to analyse spatial patterns in grazing lawn distribution in both landscapes along a gradient of distance from waterbodies. All machine learning models achieved high F-scores (F1) and overall accuracy (OA) scores in general savannah PFTs classification, with RF (F1 = 95.73±0.004%, OA = 94.16±0.004%), SVM (F1 = 95.64±0.002%, OA = 94.02±0.002%) and MLP (F1 = 95.71±0.003%, OA = 94.27±0.003%) forming a cluster of the better performing models and marginally outperforming CART (F1 = 92.74±0.006%, OA = 90.93±0.003%). Grazing lawn detection accuracy followed a similar trend within the Lower Sabie landscape, with RF, SVM, MLP and CART achieving F-scores of 0.89, 0.93, 0.94 and 0.81, respectively. Transferring models to the Satara landscape however resulted in relatively lower but high grazing lawn detection accuracies across models (RF = 0.87, SVM = 0.88, MLP = 0.85 and CART = 0.75). Results from spatial pattern analysis revealed a relatively higher proportion of grazing lawn cover under semiarid savannah conditions (Satara) compared to the mesic savannah landscape (Lower Sabie). Additionally, the results show strong negative correlation between grazing lawn spatial structure (fractional cover, patch size and connectivity) and distance from waterbodies, with larger and contiguous grazing lawn patches occurring in close proximity to waterbodies in both landscapes. The proposed machine learning approach provides a novel and robust workflow for accurate and consistent landscape-scale monitoring of grazing lawns, while our findings and research outputs provide timely information critical for understanding habitat heterogeneity in southern African savannahs.

Funder

Edge Hill University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3