The Implementation of Multiple Linear Regression for Swimming Pool Facilities: Case Study at Jøa, Norway

Author:

Smedegård Ole ØieneORCID,Jonsson ThomasORCID,Aas BjørnORCID,Stene JørnORCID,Georges LaurentORCID,Carlucci SalvatoreORCID

Abstract

This paper presents a statistical model for predicting the time-averaged total power consumption of an indoor swimming facility. The model can be a powerful tool for continuous supervision of the facility’s energy performance that can quickly disclose possible operational disruptions/irregularities and thus minimize annual energy use. Multiple linear regression analysis is used to analyze data collected in a swimming facility in Norway. The resolution of the original training dataset was in 1 min time steps and during the investigation was transposed both by time-averaging the data, and by treating part of the dataset exclusively. The statistically significant independent variables were found to be the outdoor dry-bulb temperature and the relative pool usage factor. The model accurately predicted the power consumption in the validation process, and also succeeded in disclosing all the critical operational disruptions in the validation dataset correctly. The model can therefore be applied as a dynamic energy benchmark for fault detection in swimming facilities. The final energy prediction model is relatively simple and can be deployed either in a spreadsheet or in the building automation reporting system, thus the method can contribute instantly to keep the operation of any swimming facility within the optimal individual energy performance range.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference58 articles.

1. Progress Made in Cutting Emissionshttps://ec.europa.eu/clima/policies/strategies/progress_en

2. The European Green Dealhttps://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF

3. Energy Roadmap 2050https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0885:FIN:EN:PDF

4. Energy consumption decreasing strategy for indoor swimming pools – Decentralized Ventilation system with a heat pump

5. The Use of a Heat Pump in a Ventilation Unit as an Economical and Ecological Source of Heat for the Ventilation System of an Indoor Swimming Pool Facility

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3