6-Bromo-2-hydroxypyridinate-bridged Paddlewheel-Type Dirhodium Complex Isomers: Synthesis, Crystal Structures, Electrochemical Properties, and Structure-Dependent Absorption Properties

Author:

Sato Kozo1,Yano Natsumi1ORCID,Kataoka Yusuke1ORCID

Affiliation:

1. Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue 690-8504, Shimane, Japan

Abstract

Two new paddlewheel-type dirhodium (Rh2) complex isomers, formulated as trans-2,2- and 3,1-forms of [Rh2(bhp)4] (bhp = 6-bromo-2-hydroxypyridinate), were obtained by the reaction of 6-bromo-2-hydroxypyridine with [Rh2(O2CCH3)4(H2O)2] and characterized by NMR, ESI-MS, and elemental analyses. Single crystal X-ray diffraction analyses clarified that the crystal structure of trans-2,2-form takes a conventional paddlewheel-type dimer structure with no axial coordination ligands, i.e., trans-2,2-[Rh2(bhp)4], whereas that of the 3,1-form changed significantly depending on the kinds of solvent used for crystallization processes; dimer-of-dimers-type tetrarhodium complex, i.e., 3,1-[Rh2(bhp)4]2, and a conventional paddlewheel-type dimer complex with an axial DMF ligand, i.e., 3,1-[Rh2(bhp)4(DMF)], were observed. The 3,1-form showed unique absorption changes that were not observed in the trans-2,2-form; the trans-2,2-form showed an absorption band at approximately 780 nm both in the solid state and in solution (CH2Cl2 and DMF), whereas the 3,1-form showed a similar absorption band at 783 nm in CH2Cl2 solution, but their corresponding bands were blue-shifted in solid state (655 nm) and in DMF solution (608 nm). The molecular structures and the origin of their unique absorption properties of these Rh2 complexes were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT).

Funder

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3