Development of Aldehyde Functionalized Iridium(III) Complexes Photosensitizers with Strong Visible-Light Absorption for Photocatalytic Hydrogen Generation from Water

Author:

Yao Xiao1,Zhang Qian1,Ho Po-Yu1,Yiu Sze-Chun1ORCID,Suramitr Songwut23,Hannongbua Supa23ORCID,Ho Cheuk-Lam14

Affiliation:

1. Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

2. Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10990, Thailand

3. Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand

4. PolyU Shenzhen Research Institute, Shenzhen 518057, China

Abstract

Four iridium(III) dyes functionalized with aldehyde functional group in the cyclometalating (C^N) ligands, bearing either diethyl [2,2′-bipyridine]-4,4′-dicarboxylate or tetraethyl [2,2′-bipyridine]-4,4′-diylbis(phosphonate) anchoring groups, coded as Ir1–Ir4, are synthesized and explored as photosensitizers. The synthetic route is described and all of the complexes are characterized with respect to their electrochemical and photophysical properties. Density functional theory (DFT) calculation was used to gain insight into the factors responsible for the photocatalytic properties of Ir1–Ir4 as effective photosensitizers for photocatalytic hydrogen generation. Relative to common iridium(III) dyes, such as [Ir(ppy)2(dcbpy)]+ (ppy = 2-phenylpyridine), the absorption spectra of our dyes are broader, which is attributed to the extended π-conjugation in their C^N ligands. All of the new iridium(III) dyes were used as photosensitizers for visible-light driven hydrogen production by attaching to platinized TiO2 nanoparticles (Pt–TiO2) in the presence of sacrificial electron donor (SED) of ascorbic acid (AA) in a purely aqueous solution. A H2 turnover number (TON) up to 5809 was demonstrated for 280 h irradiation. Complexes with tetraethyl [2,2′-bipyridine]-4,4′-diylbis(phosphonate) anchoring groups were found to outperform those with classical diethyl [2,2′-bipyridine]-4,4′-dicarboxylate, which may be one of the important steps in developing high-efficiency iridium(III) photosensitizers in water splitting hydrogen generation.

Funder

Hong Kong Research Grants Council

Environment and Conservation Fund

Hong Kong Polytechnic University

National Nanotechnology Center

NSTDA

The Ministry of Higher Education, Science, Research and Innovation of Thailand

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3