Benzimidazol-2-ylidene Silver Complexes: Synthesis, Characterization, Antimicrobial and Antibiofilm Activities, Molecular Docking and Theoretical Investigations

Author:

Tutar Uğur1,Çelik Cem2,Üstün Elvan3ORCID,Özdemir Namık4ORCID,Şahin Neslihan5,Sémeril David6ORCID,Gürbüz Nevin7,Özdemir İsmail7ORCID

Affiliation:

1. Department of Botanica, Faculty of Pharmacy, Cumhuriyet University, Sivas 58140, Turkey

2. Department of Medical Microbiology, Faculty of Medicine, Cumhuriyet University, Sivas 58140, Turkey

3. Department of Chemistry, Faculty of Art and Science, Ordu University, Ordu 52200, Turkey

4. Department of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, Samsun 55139, Turkey

5. Department of Science Education, Faculty of Education, Cumhuriyet University, Sivas 58040, Turkey

6. Synthèse Organométallique et Catalyse, UMR-CNRS 7177, Strasbourg University, 67008 Strasbourg, France

7. Drug Application and Research Center, İnönü University, Malatya 44280, Turkey

Abstract

Five silver(I) complexes, namely chloro[1-methallyl-3-benzyl)benzimidazol-2-ylidene] silver (6), chloro[1-methallyl-3-(2,3,5,6-tetramethylbenzyl)benzimidazol-2-ylidene]silver (7), chloro[1-methallyl-3-(3,4,5-trimethoxylbenzyl)benzimidazol-2-ylidene]silver (8), chloro[1-methallyl- 3-(naphthylmethyl)benzimidazol-2-ylidene]silver (9), and chloro [1-methallyl-3-(anthracen-9-yl- methyl)benzimidazol-2-ylidene]silver (10), were prepared starting from their corresponding benzimidazolium salts and silver oxide in 71–81% yields. A single-crystal X-ray structure of 7 was determined. These five Ag-NHC complexes were evaluated for their antimicrobial and biofilm formation inhibition properties. Complex 10 exhibited high antimicrobial activities comparable to those obtained with standard drugs such as Fluconazole in contact with Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Acinetobacter baumannii, and Candida albicans. The latter complex has been shown to be very efficient in antibiofilm activity, with 92.9% biofilm inhibition at 1.9 μg/mL on Escherichia coli. Additionally, the molecules were optimized with DFT-based computational methods for obtaining insight into the structure/reactivity relations through the relative energies of the frontier orbitals. The optimized molecules were also analyzed by molecular docking method against DNA gyrase of Escherichia coli and CYP51 from Candida albicans.

Funder

Technological and Scientific Research Council of Turkey

Ondokuz Mayıs University

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3