Oxidative, Genotoxic and Cytotoxic Damage Potential of Novel Borenium and Borinium Compounds

Author:

Oguzkan Sibel Bayil1ORCID,Turkez Hasan2,Ugras Halil Ibrahim3,Tatar Arzu4,Mardinoglu Adil56ORCID

Affiliation:

1. Department of Medical Services and Techniques, Vocational School of Health Services, University of Gaziantep, Gaziantep 27410, Turkey

2. Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25040, Turkey

3. Department of Chemistry, Arts and Science Faculty, Düzce University, Düzce 81620, Turkey

4. Department of Otorhinolaryngology Diseases, Faculty of Medicine, Atatürk University, Erzurum 25040, Turkey

5. Science for Life Laboratory, KTH-Royal Institute of Technology, 11428 Stockholm, Sweden

6. Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK

Abstract

In this study, the biological properties of novel borenium and borinium compounds in terms of their oxidative, genotoxic, and cytotoxic effects were assessed on cultured human peripheral blood cells, as well as several types of cancer cells. Our results revealed that the borinium compounds yielded the best results in terms of supporting total antioxidant capacity (TAC). In fact, borenium 1, borenium 2, borenium 3, borinium 4, and borinium 5 compounds elevated TAC levels of cultured human blood cells at rates of 42.8%, 101.5%, 69.8%, 33.3%, and 49.2%, respectively. There were no statistically significant differences (p > 0.05) between the negative control and the groups treated with all borinium and borenium concentrations from the micronucleus (MN) and chromosome aberration (CA) assays, demonstrating the non-genotoxic effects. Moreover, borenium 1 (60.7% and 50.7%), borenium 2 (70.4% and 57.2%), borenium 3 (53.1% and 45.2%), borinium 4 (55.1% and 48.1%), and borinium 5 (51.0% and 36.1%) minimized the mitomycin C(MMC)-induced genotoxic damages at different rates as determined using CA and MN assays, respectively. Again, it was found that the borinium compounds exhibited higher cytotoxic activity on cancer cells when compared to borenium compounds. Consequently, in light of our in vitro findings, it was suggested that the novel borinium and borenium compounds could be used safely in pharmacology, cosmetics, and various medical fields due to their antioxidant and non-genotoxic features, as well as their cytotoxicity potential on cancer cells.

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3