Synthesis, Structural, and Quantum Chemical Analysis of Neutral and Cationic Ruthenium(II) Complexes with Nicotinate-Polyethylene Glycol Ester Ligands

Author:

Dimić Dušan1ORCID,Eichhorn Thomas2,Milenković Dejan3ORCID,Kaluđerović Goran N.2ORCID

Affiliation:

1. Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

2. Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany

3. Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia

Abstract

Ruthenium(II/III)-based compounds have gained significant interest due to the biocompatibility of ruthenium, its similarity to iron, and the possibility for structural diversification through the choice of ligands. In this contribution, two novel ligands, (2-(2-methoxyethoxy)ethyl nicotinate hydrochloride) and (2-[2-(2-methoxyethoxy)ethoxy]ethyl nicotinate hydrochloride) (pyCOO(CH2CH2O)nCH3: L2, n = 2; L3, n = 3), were synthesized and characterized via ESI-HRMS, as well as IR and NMR spectroscopies. Their structures were optimized at the B3LYP/6-311++G(d,p) level of theory, and NMR chemical shifts were predicted, along with the most important intramolecular interactions. Additionally, two neutral complexes of the general formula [RuCl2(η6-p-cym) (L-κN)] (L = L2: 2; L3: 3) and two cationic complexes of the general formula [RuCl(η6-p-cym)(L-κN)2][PF6] (L = L1: 4; L2: 5) were obtained and characterized. The optimization of the structures was performed at the B3LYP/6-31+G(d,p)(H,C,N,O,Cl)/LanL2DZ(Ru) level of theory. Structural features were described, and intramolecular stabilization interactions were outlined.

Funder

Ministry of Science, Technological Development, and Innovation of the Republic of Serbia

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3