Abstract
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel, sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However, there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+, Mg2+ and Ca2+, while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials, the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore, it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Skłodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE, the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献