Statistical Analysis on Random Matrices of Echo State Network in PEMFC System’s Lifetime Prediction

Author:

Hua ZhiguangORCID,Zheng ZhixueORCID,Péra Marie-Cécile,Gao FeiORCID

Abstract

The data-driven method of echo state network (ESN) has been successfully used in the proton exchange membrane fuel cell (PEMFC) system’s lifetime prediction area. Nevertheless, the uncertainties of the randomly generated input and internal weight matrices in ESN have not been reported yet. In view of this, an ensemble ESN structure is proposed in this paper to analyze the effects of random matrices from a statistical point of view. For each ESN, the particle swarm optimization (PSO) method is utilized to optimize the hyperparameters of the leaking rate, spectral radius, and regularization coefficient. The statistical results of each ensemble ESN are analyzed from 100 repeated tests whose weight matrices are generated randomly. The mean value of the ensemble ESN and a confidence interval (CI) of 95% are given during the long-term lifetime prediction. The effects of two different distribution shapes, i.e., uniform distribution and Gaussian distribution, are fully compared. Finally, the effects of the ensemble structure and two different distribution shapes are tested by three experimental datasets under steady-state, quasi-dynamic, and full dynamic operating conditions.

Funder

EIPHI Graduate school

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3