Deep Neural Networks for Defects Detection in Gas Metal Arc Welding

Author:

Nele Luigi,Mattera GiulioORCID,Vozza Mario

Abstract

Welding is one of the most complex industrial processes because it is challenging to model, control, and inspect. In particular, the quality inspection process is critical because it is a complex and time-consuming activity. This research aims to propose a system of online inspection of the quality of the welded items with gas metal arc welding (GMAW) technology through the use of neural networks to speed up the inspection process. In particular, following experimental tests, the deviations of the welding parameters—such as current, voltage, and welding speed—from the Welding Procedure Specification was used to train a fully connected deep neural network, once labels have been obtained for each weld seam of a multi-pass welding procedure through non-destructive testing, which made it possible to find a correspondence between welding defects (e.g., porosity, lack of penetrations, etc.) and process parameters. The final results have shown an accuracy greater than 93% in defects classification and an inference time of less than 150 ms, which allow us to use this method for real-time purposes. Furthermore in this work networks were trained to reach a smaller false positive rate for the classification task on test data, to reduce the presence of faulty parts among non-defective parts.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3