Analysis of the Refraction Effect in Ultrasound Breast Tomography

Author:

Opieliński Krzysztof J.ORCID,Bułkowski Mariusz,Gabryel Andrzej,Wiktorowicz Andrzej

Abstract

Ultrasound breast tomography (UBT) is a promising quantitative imaging method. It allows for precise analysis of ultrasound velocity distribution, which is related to tissue density and elasticity, enabling cancer detection. Only a few centers around the world have a prototype of the device for in vivo breast ultrasound tomography imaging. The quality of images reconstructed from measurements of ultrasound pulse transit times is adversely affected by the refraction of beam rays on the breast immersed in water. Refraction can be reduced using waveform tomography, ray-tracing, and ray-linking methods. However, this requires the acquisition of a pre-reconstructed pattern and is limited by extreme computational costs. In this study, the effect of refraction on transit time measurements of ultrasound passing through the female breast was analyzed under immersion conditions in water. It was found that the refraction causes the highest measurement errors in the area of the water/breast interface, and these can be reduced by adjusting the water temperature and changing the breast geometry. The results allow us to improve the quality of breast images reconstructed using an efficient transformation algorithm that assumes rectilinear ultrasound propagation paths between transmitters and receivers. In vivo breast studies were performed on the developed hybrid UBT scanner.

Funder

Polish National Center for Research and Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3