Contamination, Sources, and Health Risks Associated with Soil PAHs in Rebuilt Land from a Coking Plant, Beijing, China

Author:

Cao Wei,Yin Liqin,Zhang Dan,Wang Yingying,Yuan Jing,Zhu Yi,Dou Junfeng

Abstract

This study investigated the polycyclic aromatic hydrocarbon (PAH) pollution in the reconstructed land of an abandoned industrial site: a coking plant in Beijing. To meet the needs of urban development, many factories have had to be relocated from city centers, and abandoned industrial sites often need to be transformed into residential land or urban green space through a series of restoration measures. It is necessary to study the level of residual pollutants and potential risks associated with industrial reconstructed land. The concentration of 16 PAHs in the study area ranged from 314.7 to 1618.3 µg/kg, and the average concentration was still at a medium pollution level; the concentration of PAHs in the original coking workshop had the highest levels (1350.5 µg/kg). The PAHs in the soil were mainly low-ring aromatics, especially naphthalene and phenanthrene. The isomer method and principal component analysis indicated that PAHs in the topsoil were the result of coal and biomass combustion. The seven carcinogenic PAHs were the main contributors to the total toxicity equivalence. The genetic toxicity of benzo[a]pyrene was relatively low, and the results were related to the concentration level. There were potential carcinogenic risks for people of varying ages in this residential area. In total, gender differences were small, and the comprehensive lifetime cancer risk level was still acceptable. For the remaining plots at the study site, the daily intake of PAHs by construction workers was between 0.74–2.31 ng/kg bw/day, which requires further evaluation about ignored area occupational exposure to environmental pollutants.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3