The Mortality Response to Absolute and Relative Temperature Extremes

Author:

Sheridan Scott C.ORCID,Lee Cameron C.ORCID,Allen Michael J.

Abstract

While the impact of absolute extreme temperatures on human health has been amply studied, far less attention has been given to relative temperature extremes, that is, events that are highly unusual for the time of year but not necessarily extreme relative to a location’s overall climate. In this research, we use a recently defined extreme temperature event metric to define absolute extreme heat events (EHE) and extreme cold events (ECE) using absolute thresholds, and relative extreme heat events (REHE) and relative extreme cold events (RECE) using relative thresholds. All-cause mortality outcomes using a distributed lag nonlinear model are evaluated for the largest 51 metropolitan areas in the US for the period 1975–2010. Both the immediate impacts and the cumulative 20-day impacts are assessed for each of the extreme temperature event types. The 51 metropolitan areas were then grouped into 8 regions for meta-analysis. For heat events, the greatest mortality increases occur with a 0-day lag, with the subsequent days showing below-expected mortality (harvesting) that decreases the overall cumulative impact. For EHE, increases in mortality are still statistically significant when examined over 20 days. For REHE, it appears as though the day-0 increase in mortality is short-term displacement. For cold events, both relative and absolute, there is little mortality increase on day 0, but the impacts increase on subsequent days. Cumulative impacts are statistically significant at more than half of the stations for both ECE and RECE. The response to absolute ECE is strongest, but is also significant when using RECE across several southern locations, suggesting that there may be a lack of acclimatization, increasing mortality in relative cold events both early and late in winter.

Funder

Climate Program Office

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3