Controllable Phase Transformation and Enhanced Photocatalytic Performance of Nano-TiO2 by Using Oxalic Acid

Author:

Chen JiaqiORCID,Gao Jian,Liu Xiaoyang,Wang Pan,Yu Xue,Zhao FengORCID,Sun Yan,Feng Wei,Wang Qingyuan

Abstract

Degradation of organic pollutants, especially organic dyes and antibiotics, by semiconductor photocatalysts is an efficient strategy for wastewater treatment. TiO2 nanomaterials are considered to be promising photocatalysts due to their high chemical stability, high efficiency and availability. Anatase TiO2 generally has superior photocatalytic activity to the rutile phase. However, the anatase phase can be irreversibly transformed to rutile phase when calcined at an elevated temperature. Methods to improve the stability of anatase are especially important for the TiO2 gas sensors working at high temperatures. The addition of strong acids can effectively suppress this transformation process. However, these strong acids are relatively expensive, corrosive and environmentally unfriendly. Herein, oxalic acid (OA) as a natural acid was used to control the hydrolysis process of tetrabutyl titanate (TBOT), leading to controllable crystalline phase transformation and reduced crystalline size of TiO2 on the nanoscale. What is more, the photocatalytic degradation performances were enhanced continuously when the molar ratio of OA to TBOT increased. The degradation reaction rate constants of CT650-R25 were about 10 times that of CT650-R0. The mechanism study shows that the enhanced photocatalytic activity can be attributed to the improved dispersibility, increased specific surface area and reduced recombination rates of photo-induced charge carriers and decreased energy bands as the concentration of OA increased. Thus, this work provides a simple, mild and effective method for controlling the crystalline forms of nano-TiO2 with enhanced photocatalytic performance towards waste water treatment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3