Exploring Glyoxalase Strategies for Managing Sugar-Induced Chronic Diseases

Author:

Gugliucci Alejandro1

Affiliation:

1. Glycation, Oxidation and Disease Laboratory, Touro University California, Vallejo, CA 94592, USA

Abstract

The liver’s crucial role in methylglyoxal (MG) metabolism is frequently overlooked in the literature. We present a perspective that enhances the current understanding of the role of methylglyoxal (MG) and the glyoxalase cycle in the pathogenesis of insulin resistance and obesity, ultimately leading to type 2 diabetes mellitus (DM) and cardiovascular disease (CVD). Fructose may be a significant substrate contributing, particularly in contemporary times, to the flux of trioses in the liver, accounting for a substantial portion of MG production. The steady-state concentration of MG—and the subsequent modification of proteins—would then be determined by the flux of trioses, their utilization in lipogenesis, and their decomposition into MG, which is further converted into D-lactate by glyoxalase enzymes GLO1 and GLO2. Consequently, enhancing the activity and/or expression of GLO1 could potentially mitigate the adverse effects of fructose in the liver. Additional research and validation are required to confirm these biological pathways. These arguments are in favor of further research into safe and efficient ways to activate the glyoxalase pathway to lessen the negative effects of fructose metabolism that lead to insulin resistance (IR) and its related repercussions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3