Abstract
With the rising population, environmental pollution, and social development, potable water is reducing and being contaminated day by day continually. Thus, several researchers have focused their studies on seas and oceans in order to get potable fresh water by desalination of their saltwater. Solar still of basin type is one of the available technologies to purify water because of free solar energy. The computational fluid dynamic CFD model of the solar still can significantly improve means for optimization of the solar still structure because it reduces the need for conducting large amount of experiments. Therefore, the main purpose of this study is presenting a multi-phase, three-dimensional CFD model, which predicts the performance of the solar still without using any experimental measurements, depending on the CFD solar radiation model. Simulated results are compared with experimental values of water and glass cover temperatures and yield of fresh water in climate conditions of Sheben El-Kom, Egypt (latitude 30.5° N and longitude 31.01° E). The simulation results were found to be in acceptable agreement with the experimental measured data. The results indicated that the daily simulated and experimental accumulated productivities of the single-slope solar still were found to be 1.982 and 1.785 L/m2 at a water depth of 2 cm. In addition, the simulated and experimental daily efficiency were around 16.79% and 15.5%, respectively, for the tested water depth.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference19 articles.
1. Water and Sanitationhttps://www.unicefusa.org/mission/survival/water
2. Thermodynamic, exergy, and thermoeconomic analysis of multiple effect distillation processes;Pietro,2018
3. Review on the energy and economic efficiencies of passive and active solar distillation systems
4. Reverse Osmosis Membrane Separation Technology, Membrane Separation Principles and Applications;Wang,2019
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献