Artepillin C Time−Dependently Alleviates Metabolic Syndrome in Obese Mice by Regulating CREB/CRTC2−BMAL1 Signaling

Author:

Wang Lei1,Zhou Lingqin1,Liu Shuai2ORCID,Liu Yaxin1,Zhao Jia1,Chen Yaqiong3,Liu Yi1

Affiliation:

1. Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China

2. Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China

3. Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China

Abstract

Artepillin C (APC), a cAMP-response element−binding (CREB)/CREB regulated transcription coactivator 2 (CRTC2) inhibitor isolated from Brazilian green propolis, can ameliorate metabolic syndrome in obese mice. Because the sensitivity and responsiveness of the body to the drug depend on the time of day and the circadian clock alignment, the optimal administration time of APC for desired efficacy in treating metabolic syndrome remains unclear. In this study, APC (20 mg/kg) or the vehicle was intraperitoneally injected into obese mice once daily for one or three weeks. The results of the insulin tolerance test, pyruvate tolerance test, and histological and biochemical assays showed that APC could improve whole−body glucose homeostasis and decrease hepatic lipid synthesis following a circadian rhythm. Further exploration of the underlying mechanism revealed that APC may disturb the diurnal oscillations of the expression of brain and muscle ARNT−like protein (BMAL1) in primary hepatocytes and the livers of the study subjects. Moreover, APC could inhibit hepatic BMAL1 expression by blocking the CREB/CRTC2 transcription complex. BMAL1 overexpression in primary hepatocytes or the livers of db/db mice antagonized the inhibitory effect of APC on hepatic lipid metabolism. In conclusion, the chronotherapy of APC may relieve metabolic syndrome in obese mice, and the mechanism behind APC−mediated time−of−day effects on metabolic syndrome were unveiled, thereby providing a foundation for optimized APC treatment from a mechanistic perspective.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3