Development of a TiNbTaMoZr-Based High Entropy Alloy with Low Young´s Modulus by Mechanical Alloying Route

Author:

Normand Juliette,Moriche RocíoORCID,García-Garrido Cristina,Sepúlveda Ferrer Ranier EnriqueORCID,Chicardi ErnestoORCID

Abstract

In this work, an equiatomic TiNbTaMoZr-based high-entropy alloy (HEA) has been developed by a powder metallurgy route, which consists of a process of combined one-step low-temperature mechanical milling starting from the transition metals as raw materials and a subsequent pressureless sintering. In this way, the optimized synthesized specimen, after 10 h of milling time, showed two different body-centered cubic (bcc) TiNbTaMoZr alloys, which, after sintering at 1450 °C, 1 h of dwell time and a heating and cooling rate of 5 °C min−1, it remained formed as two bcc TiNbTaMoZr-based HEAs. This material, with micrometric and equiaxed particles, and with homogeneously distributed phases, presented a Young’s modulus that was significantly higher (5.8 GPa) and lower (62.1 GPa) than that of the usual commercially pure (cp) Ti and Ti6Al4V alloy used for bone-replacement implants. It also presented similar values to those of the HEAs developed for the same purpose. These interesting properties would enable this TiNbTaMoZr-based HEA to be used as a potential biomaterial for bulk or porous bone implants with high hardness and low Young´s modulus, thereby preventing the appearance of stress-shielding phenomena.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3