Effects of Recrystallization on Tensile Anisotropic Properties for IN738LC Fabricated by Laser Powder Bed Fusion

Author:

Hibino ShinyaORCID,Fujimitsu Kazushige,Azuma Makoto,Ishimoto TakuyaORCID,Nakano TakayoshiORCID

Abstract

This study demonstrates the effects of recrystallization on tensile properties and the anisotropy of IN738LC, a typical γ’ precipitation-strengthened alloy, at both room and high temperatures via the laser powder bed fusion process. The nonrecrystallized columnar microstructure, subjected to standard IN738LC heat treatment up to 1120 °C, and the almost fully recrystallized microstructure, heat-treated at 1204 °C, were compared. The tensile properties strongly depend on whether recrystallization was completed as well as the tensile direction. This can be explained by microstructure characterization, featuring the Taylor factor in the tensile direction, average grain size estimated by ellipse approximation, and the relationship between the grain shape and tensile direction. The shape of the recrystallized grains and the distribution of coarse MC carbides inside the recrystallized grains were determined by the microstructure in an as-built state. In high-temperature tensile tests conducted in the horizontal direction, the separation of the columnar grains caused a brittle fracture. In contrast, dimples were observed at the fracture surface after recrystallization, indicating scope for further improvement in ductility.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3