In Silico Investigation of Some Compounds from the N-Butanol Extract of Centaurea tougourensis Boiss. & Reut.

Author:

Dassamiour Saliha,Bensaad Mohamed SabriORCID,Hambaba Leila,Melakhessou Mohamed Akram,Sami RokayyaORCID,Al-Mushhin Amina A. M.,Aljahani Amani H.,Al Masoudi Luluah M.

Abstract

Bioinformatics as a newly emerging discipline is considered nowadays a reference to characterize the physicochemical and pharmacological properties of the actual biocompounds contained in plants, which has helped the pharmaceutical industry a lot in the drug development process. In this study, a bioinformatics approach known as in silico was performed to predict, for the first time, the physicochemical properties, ADMET profile, pharmacological capacities, cytotoxicity, and nervous system macromolecular targets, as well as the gene expression profiles, of four compounds recently identified from Centaurea tougourensis via the gas chromatography–mass spectrometry (GC–MS) approach. Thus, four compounds were tested from the n-butanol (n-BuOH) extract of this plant, named, respectively, Acridin-9-amine, 1,2,3,4-tetrahydro-5,7-dimethyl- (compound 1), 3-[2,3-Dihydro-2,2-dimethylbenzofuran-7-yl]-5-methoxy-1,3,4-oxadiazol-2(3H)-one (compound 2), 9,9-Dimethoxybicyclo[3.3.1]nona-2,4-dione (compound 3), and 3-[3-Bromophenyl]-7-chloro-3,4-dihydro-10-hydroxy-1,9(2H,10H)-acridinedione (compound 4). The insilico investigation revealed that the four tested compounds could be a good candidate to regulate the expression of key genes and may also exert significant cytotoxic effects against several tumor celllines. In addition, these compounds could also be effective in the treatment of some diseases related to diabetes, skin pathologies, cardiovascular, and central nervous system disorders. The bioactive compounds of plant remain the best alternative in the context of the drug discovery and development process.

Funder

Taif University Researchers Supporting Project Number

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3