In Vivo Effects of Nanotechnologically Synthesized and Characterized Fluoridated Strontium Apatite Nanoparticles in the Surgical Treatment of Endodontic Bone Lesions

Author:

Oztekin Faruk,Gurgenc TuranORCID,Dundar Serkan,Ozercan Ibrahim Hanifi,Eskibaglar MehmetORCID,Ozcan Erhan Cahit,Bingul Muhammet Bahattin,Habek Osman

Abstract

In this study, fluoridated strontium apatite (SAP) nanoparticles with different mole percentages (5%, 10%, 30%, and 50%) synthesized using a hydrothermal method were used as biomaterials. The in vivo biocompatibility of the synthesized nanoparticles was investigated by embedding them as biomaterials in bone defects created in rat tibiae. Through the hematoxylin-eosin staining method, a histopathological analysis was performed for new bone formation, osteoblast density, and fibrotic tissue formation. Fluorine (F) addition affected the structural and morphological properties of the nanoparticles. With the F doping, the shapes of the nanoparticles changed from nano-rods to almost spherical. The Sr/P ratios, with a stoichiometric value of 1.67, were 1.76, 1.53, 1.54, 1.68, and 1.79 in pure, 5%, 10%, 30%, and 50% F-doped nanoparticles, respectively. The F/Sr ratios of 5%, 10%, 30%, and 50% F-doped nanoparticles were 0.05, 0.13, 0.16, and 0.20, respectively. The highest values in terms of fibrotic tissue formation were obtained in the group containing pure SAP. The best results in terms of new bone formation and osteoblast density in bone defects were observed in the groups with higher F ratios (30% and 50% F-doped). Pure and F-doped strontium apatite nanoparticles showed good results for new bone formation and osteoblast levels compared to the control group. It was observed that an increase in the fluorine ratio resulted in better bone healing. The results showed that pure and F-doped SAP nanoparticles synthesized by a hydrothermal method can be used as biomaterials in orthopedics and dentistry, especially in the surgical treatment of endodontic lesions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3