Optimizing Automated Brain Extraction for Moderate to Severe Traumatic Brain Injury Patients: The Role of Intensity Normalization and Bias-Field Correction

Author:

Carbone Patrick1,Alba Celina1,Bennett Alexis1,Kriukova Kseniia1,Duncan Dominique1

Affiliation:

1. USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA

Abstract

Accurate brain extraction is crucial for the validity of MRI analyses, particularly in the context of traumatic brain injury (TBI), where conventional automated methods frequently fall short. This study investigates the interplay between intensity normalization, bias-field correction (also called intensity inhomogeneity correction), and automated brain extraction in MRIs of individuals with TBI. We analyzed 125 T1-weighted Magnetization-Prepared Rapid Gradient-Echo (T1-MPRAGE) and 72 T2-weighted Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI sequences from a cohort of 143 patients with moderate to severe TBI. Our study combined 14 different intensity processing procedures, each using a configuration of N3 inhomogeneity correction, Z-score normalization, KDE-based normalization, or WhiteStripe intensity normalization, with 10 different configurations of the Brain Extraction Tool (BET) and the Optimized Brain Extraction Tool (optiBET). Our results demonstrate that optiBET with N3 inhomogeneity correction produces the most accurate brain extractions, specifically with one iteration of N3 for T1-MPRAGE and four iterations for T2-FLAIR, and pipelines incorporating N3 inhomogeneity correction significantly improved the accuracy of BET as well. Conversely, intensity normalization demonstrated a complex relationship with brain extraction, with effects varying by the normalization algorithm and BET parameter configuration combination. This study elucidates the interactions between intensity processing and the accuracy of brain extraction. Understanding these relationships is essential to the effective and efficient preprocessing of TBI MRI data, laying the groundwork for the development of robust preprocessing pipelines optimized for multi-site TBI MRI data.

Funder

National Institute of Neurological Disorders and Stroke (NINDS) of the National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3