Chemical Activation of Banana Peel Waste-Derived Biochar Using KOH and Urea for CO2 Capture

Author:

Sreńscek-Nazzal Joanna1ORCID,Kamińska Adrianna1ORCID,Serafin Jarosław2,Michalkiewicz Beata1ORCID

Affiliation:

1. Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland

2. Department of Inorganic and Organic Chemistry, University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain

Abstract

This article describes the synthesis and characterization of porous carbon derived from waste banana peels by chemical activation with KOH or by activation KOH and urea modification. The as-synthesized samples were carefully characterized by various techniques. The prepared carbonaceous materials possess highly developed micropore and mesopore structures and high specific surface area (up to 2795 cm2/g for materials synthetized with KOH and 2718 cm2/g for activated carbons prepared with KOH and urea). A series of KOH-activated samples showed CO2 adsorption at 1 bar to 5.75 mmol/g at 0 °C and 3.74 mmol/g at 25 °C. The incorporation of nitrogen into the carbon sorbent structure increased the carbon uptake capacity of the resulting materials at 1 bar to 6.28 mmol/g and to 3.86 mmol/g at 0 °C and 25 °C, respectively. It was demonstrated that treatment with urea leads to a significant increase in nitrogen content and, consequently, CO2 adsorption, except for the material carbonized at 900 °C. At such a high temperature, almost complete decomposition of urea occurs. The results presented in this work could be used in the future for utilization of biomass such as banana peels as a low-cost adsorbent for CO2 capture, which could have a positive impact on the environment and human health protection.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3