First Measurements of Gas Flux with a Low-Cost Smartphone Sensor-Based UV Camera on the Volcanoes of Northern Chile

Author:

Aguilera FelipeORCID,Layana SusanaORCID,Rojas FelipeORCID,Arratia Pilar,Wilkes Thomas C.ORCID,González CristóbalORCID,Inostroza ManuelORCID,McGonigle Andrew J.S.ORCID,Pering Tom D.ORCID,Ureta Gabriel

Abstract

UV cameras have been used for over a decade in order to remotely sense SO2 emission rates from active volcanoes, and to thereby enhance our understanding of processes related to active and passive degassing. Whilst SO2 column density retrievals can be more accurate/sophisticated using alternative techniques (e.g., Differential Optical Absorption Spectrometer (DOAS), Correlation Spectrometer (COSPEC)), due to their higher spectral resolutions, UV cameras provide the advantage of high time-resolution emission rates, a much greater spatial resolution, and the ability to simultaneously retrieve plume speeds. Nevertheless, the relatively high costs have limited their uptake to a limited number of research groups and volcanic observatories across the planet. One recent intervention in this regard has been the introduction of the PiCam UV camera, which has considerably lowered instrumental cost. Here we present the first data obtained with the PiCam system from seven persistently degassing volcanoes in northern Chile, demonstrating robust field operation in challenging conditions and over an extended period of time, hence adding credence to the potential of these units for more widespread dissemination to the international volcanic gas measurement community. Small and weak plumes, as well as strongly degassing plumes were measured at distances ranging 0.6–10.8 km from the sources, resulting in a wide range of SO2 emission rates, varying from 3.8 ± 1.8 to 361 ± 31.6 td−1. Our acquired data are discussed with reference to previously reported emission rates from other ground-based remotely sensed techniques at the same volcanoes, in particular considering: resolution of single plume emissions in multi-plume volcanoes, light dilution, plume geometry, seasonal effects, and the applied plume speed measurement methodology. The main internal/external factors that influence positive/negative PiCam measurements include camera shake, light dilution, and the performance of the OpenCV and control points post processing methods. A simple reprocessing method is presented in order to correct the camera shake. Finally, volcanoes were separated into two distinct groups: low and moderate SO2 emission rates systems. These groups correlate positively with their volcanological characteristics, especially with the fluid compositions from fumaroles.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference95 articles.

1. Improved optical flow velocity analysis in SO<sub>2</sub> camera images of volcanic plumes – implications for emission-rate retrievals investigated at Mt Etna, Italy and Guallatiri, Chile

2. Chemical composition of volcanic gases;Giggenbach,1996

3. Volcanic gas studies: Methods, results and applications;Symonds,1994

4. Validation of the SO 2 camera for high temporal and spatial resolution monitoring of SO 2 emissions

5. Resumen de las principales técnicas de percepción remota usadas en volcanes para monitorear las emisiones de gas en la superficie;Rodríguez;Rev. Geol. Am. Central.,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3