Mechanical Behavior of Subcutaneous and Visceral Abdominal Adipose Tissue in Patients with Obesity

Author:

Fontanella Chiara GiuliaORCID,Toniolo IlariaORCID,Foletto Mirto,Prevedello Luca,Carniel Emanuele LuigiORCID

Abstract

The mechanical characterization of adipose tissues is important for various medical purposes, including plastic surgery and biomechanical applications, such as computational human body models for the simulation of surgical procedures or injury prediction, for example, in the evaluation of vehicle crashworthiness. In this context, the measurement of human subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) mechanical properties in relation to subject characteristics may be really relevant. The aim of this work was to properly characterize the mechanical response of adipose tissues in patients with obesity. Then, the data were exploited to develop a reliable finite element model of the adipose tissues characterized by a constitutive material model that accounted for nonlinear elasticity and time dependence. Mechanical tests have been performed on both SAT and VAT specimens, which have been harvested from patients with severe obesity during standard laparoscopic sleeve gastrectomy intervention. The experimental campaign included indentation tests, which permitted us to obtain the initial/final indentation stiffnesses for each specimen. Statistical results revealed a higher statistical stiffness in SAT than in VAT, with an initial/final indentation stiffness of 1.65 (SD ± 0.29) N/30.30 (SD ± 20) N compared to 1.29 (SD ± 0.30) N/21.00 (SD ± 16) N. Moreover, the results showed that gender, BMI, and age did not significantly affect the stiffness. The experimental results were used in the identification of the constitutive parameters to be inserted in the constitutive material model. Such constitutive characterization of VAT and SAT mechanics can be the starting point for the future development of more accurate computational models of the human adipose tissue and, in general, of the human body for the optimization of numerous medical and biomechanical procedures and applications.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3