Using Field-Based Monitoring to Enhance the Performance of Rainfall Thresholds for Landslide Warning

Author:

Abraham Minu TreesaORCID,Satyam Neelima,Bulzinetti Maria Alexandra,Pradhan BiswajeetORCID,Pham Binh ThaiORCID,Segoni SamueleORCID

Abstract

Landslides are natural disasters which can create major setbacks to the socioeconomic of a region. Destructive landslides may happen in a quick time, resulting in severe loss of lives and properties. Landslide Early Warning Systems (LEWS) can reduce the risk associated with landslides by providing enough time for the authorities and the public to take necessary decisions and actions. LEWS are usually based on statistical rainfall thresholds, but this approach is often associated to high false alarms rates. This manuscript discusses the development of an integrated approach, considering both rainfall thresholds and field monitoring data. The method was implemented in Kalimpong, a town in the Darjeeling Himalayas, India. In this work, a decisional algorithm is proposed using rainfall and real-time field monitoring data as inputs. The tilting angles measured using MicroElectroMechanical Systems (MEMS) tilt sensors were used to reduce the false alarms issued by the empirical rainfall thresholds. When critical conditions are exceeded for both components of the systems (rainfall thresholds and tiltmeters), authorities can issue an alert to the public regarding a possible slope failure. This approach was found effective in improving the performance of the conventional rainfall thresholds. We improved the efficiency of the model from 84% (model based solely on rainfall thresholds) to 92% (model with the integration of field monitoring data). This conceptual improvement in the rainfall thresholds enhances the performance of the system significantly and makes it a potential tool that can be used in LEWS for the study area.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3