Comment on Lesser et al. Using Stable Isotope Analyses to Assess the Trophic Ecology of Scleractinian Corals. Oceans 2022, 3, 527–546

Author:

Kahng Samuel E.12ORCID

Affiliation:

1. Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI 96822, USA

2. Faculty of Science, Hokkaido University, Sapporo 060-0808, Japan

Abstract

In warm oligotrophic waters, photosymbiotic coral can flourish across a wide depth range (0–170+ m), extending to depths where light attenuates to ~0.1% of surface values. Conventional wisdom has long assumed that mixotrophic corals must increasingly rely on heterotrophy as the ambient light available to drive photosynthesis decreases with depth. However, evidence challenging this traditional dogma has been accumulating in recent years. Although some evidence suggests that some depth-generalist coral species likely increase their reliance on heterotrophy with increasing depth, there is growing evidence that other species do not. Analysis of bulk stable isotopes (δ13C and δ15N) applied to photosymbiotic corals has been used in several ways to infer their trophic ecology and their relative dependence on symbiont photosynthesis versus heterotrophic feeding. However, metrics based on bulk tissue δ13C and δ15N values are subject to considerable uncertainty due to the multiple factors that can affect their values independent of trophic ecology. These competing factors can be quite challenging to disentangle and have led to inconsistent results and conclusions regarding trends in coral heterotrophy with depth. The evidence to date suggests no uniform trophic pattern with increasing depth or decreasing light. Different corals appear to function differently, which is not surprising given their phylogenetic diversity.

Funder

Japanese Society for the Promotion of Science (JSPS) Invitational Research Fellowship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3