Activation of STAT3 Regulates Reactive Astrogliosis and Neuronal Death Induced by AβO Neurotoxicity

Author:

Toral-Rios DaniraORCID,Patiño-López GenaroORCID,Gómez-Lira GiselaORCID,Gutiérrez Rafael,Becerril-Pérez Fernando,Rosales-Córdova Aldebarán,León-Contreras Juan CarlosORCID,Hernández-Pando Rogelio,León-Rivera Ismael,Soto-Cruz IsabelORCID,Florán-Garduño BenjamínORCID,Campos-Peña VictoriaORCID

Abstract

Amyloid-beta oligomers (AβO) have been proposed as the most potent neurotoxic and inflammation inducers in Alzheimer’s disease (AD). AβO contribute to AD pathogenesis by impairing the production of several cytokines and inflammation-related signaling pathways, such as the Janus kinases/signal transducer of transcription factor-3 (JAK/STAT3) pathway. STAT3 modulates glial activation, indirectly regulates Aβ deposition, and induces cognitive decline in AD transgenic models. However, in vivo studies using an AβO microinjection rat model have not yet explored STAT3 role. The main purpose of this study was to elucidate if a single microinjection of AβO could promote an increased expression of STAT3 in glial cells favoring neuroinflammation and neurodegeneration. We designed a model of intrahippocampal microinjection and assessed glial activation, cytokines production, STAT3 expression, and neurodegeneration in time. Our results showed robust expression of STAT3 in glial cells (mainly in astrocytes) and neurons, correlating with neuronal death in response to AβO administration. A STAT3 inhibition assay conducted in rat primary hippocampal cultures, suggested that the induction of the transcription factor by AβO in astrocytes leads them to an activation state that may favor neuronal death. Notwithstanding, pharmacological inhibition of the JAK2/STAT3 pathway should be focused on astrocytes because it is also essential in neurons survival. Overall, these findings strongly suggest the participation of STAT3 in the development of neurodegeneration.

Funder

CONACYT

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3