Effects of pH on the Photocatalytic Activity and Degradation Mechanism of Rhodamine B over Fusiform Bi Photocatalysts under Visible Light

Author:

Chen Yuli1,Ma Dechong12ORCID,He Guowen12,Pan Sai1

Affiliation:

1. College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China

2. Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Hunan City University, Yiyang 413000, China

Abstract

In this study, fusiform bismuth (Bi) was synthesized, and its photocatalytic performance, degradation mechanism, and pathways for removing rhodamine B (RhB) at different pH levels were investigated. Additionally, the morphologies, structural characteristics, surface electronic states, optical properties, active species, and potential degradation pathways of RhB over the fusiform Bi were analyzed. The comparison of the results before and after RhB degradation using the fusiform Bi revealed the formation of a Bi/BiOCl heterojunction photocatalyst. At pH 2.0, 3.0, 5.0, 7.0, and 9.0, the heterojunction exhibited excellent photocatalytic activity, with RhB removal efficiencies of ~97%, 96.7%, 72.6%, 53.5%, and 27.6%, respectively. Moreover, total organic carbon and chemical oxygen demand analyses were performed to evaluate the mineralization rates of RhB with the fusiform Bi at pH 3.0 and 7.0. Furthermore, the effects of catalyst content, initial RhB concentration, light source distance, inorganic anions, and reactant temperature on the photocatalytic performance of the fusiform Bi were investigated. Additionally, the types of active species and potential photocatalytic mechanisms for RhB degradation over the fusiform Bi at different pH levels (3.0 and 7.0) were elucidated. The appropriate degradation pathways were identified via liquid chromatography–mass spectrometry at pH 3.0 and 7.0.

Funder

Natural Science Foundation of Hunan Province

Key Project Foundation of Hunan Provincial Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3