Artificial Intelligence of Things as New Paradigm in Aviation Health Monitoring Systems

Author:

Kabashkin Igor1ORCID,Shoshin Leonid2ORCID

Affiliation:

1. Engineering Faculty, Transport and Telecommunication Institute, Lauvas iela 2, LV-1019 Riga, Latvia

2. Sky Net Technics, Business Center 03, Ras Al-Khaimah B04-223, United Arab Emirates

Abstract

The integration of artificial intelligence of things (AIoT) is transforming aviation health monitoring systems by combining extensive data collection with advanced analytical capabilities. This study proposes a framework that enhances predictive accuracy, operational efficiency, and safety while optimizing maintenance strategies and reducing costs. Utilizing a three-tiered cloud architecture, the AIoT system enables real-time data acquisition from sensors embedded in aircraft systems, followed by machine learning algorithms to analyze and interpret the data for proactive decision-making. This research examines the evolution from traditional to AIoT-enhanced monitoring, presenting a comprehensive architecture integrated with satellite communication and 6G technology. The mathematical models quantifying the benefits of increased diagnostic depth through AIoT, covering aspects such as predictive accuracy, cost savings, and safety improvements are introduced in this paper. The findings emphasize the strategic importance of investing in AIoT technologies to balance cost, safety, and efficiency in aviation maintenance and operations, marking a paradigm shift from traditional health monitoring to proactive health management in aviation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3