Impact Analysis of Welding Sequence to Reduce Weld Deformation in Aluminum Hulls

Author:

Lee Chungwoo12ORCID,Woo Suseong1,Kim Jisun1

Affiliation:

1. Purpose Built Mobility Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea

2. Department of Metallurgical Engineering, Jeonbuk National University, Baekje-daero, Jeonju-si 54896, Republic of Korea

Abstract

Aluminum hulls, which are preferred in the marine industry due to their durability, corrosion resistance, and lightweight properties, face serious challenges due to thermal deformation during welding. This study aims to predict and minimize transverse deformations due to welding sequences for a transverse model in the lower part of an aluminum hull. To predict deformations, heat source dimensions obtained from actual weld beads were used as simulation conditions, and various welding sequence conditions were simulated through the developed finite element method (FEM). The simulation results were compared with actual deformation measurements to verify their reliability, and the optimal welding sequence which minimized deformation was derived. The simulation results show that by changing the welding sequence conditions, the maximum displacement can be reduced from a maximum of 52.1% to a minimum of 39.1%, and the effective plastic strain can be reduced from a maximum of 19.6% to a minimum of 4.8%. These results show that adjusting the welding sequence conditions can significantly improve structural integrity by minimizing deformation. The results of this study suggest that the control of the welding sequence can be used to reduce the deformation of aluminum hulls and promote a more sustainable marine industry with improved quality.

Funder

“Hydrogen Fuel Cell-Based Leisure Ship Construction Demonstration Project” in Jeollanam-do and Yeongam-gun

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3