A Novel Dressing Composed of Adipose Stem Cells and Decellularized Wharton’s Jelly Facilitated Wound Healing and Relieved Lymphedema by Enhancing Angiogenesis and Lymphangiogenesis in a Rat Model

Author:

Lu Jen-Her12ORCID,Hsia Kai34ORCID,Su Chih-Kuan4,Pan Yi-Hsiang4,Ma Hsu45,Chiou Shih-Hwa36,Lin Chih-Hsun45ORCID

Affiliation:

1. Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan

2. Section of Pediatric Cardiology, Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan

3. Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan

4. Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan

5. Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan

6. Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 300093, Taiwan

Abstract

Lymphedema causes tissue swelling due to the accumulation of lymphatic fluid in the tissue, which delays the process of wound-healing. Developing effective treatment options of lymphedema is still an urgent issue. In this study, we aim to fabricate tissue-engineered moist wound dressings with adipose stem cells (ASCs) and decellularized Wharton’s jelly (dWJ) from the human umbilical cord in order to ameliorate lymphedema. Rat ASCs were proliferated and an apparent layer was observed on dWJ at day 7 and 14. A rat tail lymphedema model was developed to evaluate the efficacy of the treatment. Approximately 1 cm of skin near the base of the rat tail was circularly excised. The wounds were treated by secondary healing (control) (n = 5), decellularized Wharton’s jelly (n = 5) and ASC-seeded dWJ (n = 5). The wound-healing rate and the tail volume were recorded once a week from week one to week five. Angiogenesis and lymphangiogenesis were assessed by immunochemistry staining with anti-CD31 and anti-LYVE1. The results showed that the wound-healing rate was faster and the tail volume was lesser in the ASC-seeded dWJ group than in the control group. More CD31+ and LYVE-1+ cells were observed at the wound-healing area in the ASC-seeded dWJ group than in the control group. This proves that tissue-engineered moist wound dressings can accelerate wound-healing and reduce lymphedema by promoting angiogenesis and lymphangiogenesis.

Funder

Taipei Veterans General Hospital

Taiwan Ministry of Science and Technology

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decellularized umbilical cord stroma in tissue engineering and regenerative medicine: a systematic review;Russian Journal of Transplantology and Artificial Organs;2023-07-15

2. Update April 2023;Lymphatic Research and Biology;2023-04-01

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3