Design and Application of a UAV Autonomous Inspection System for High-Voltage Power Transmission Lines

Author:

Li Ziran1ORCID,Zhang Yanwen1,Wu Hao2,Suzuki Satoshi1ORCID,Namiki Akio1ORCID,Wang Wei3

Affiliation:

1. Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

2. School of Automation, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, China

3. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

As the scale of the power grid continues to expand, the human-based inspection method struggles to meet the needs of efficient grid operation and maintenance. Currently, the existing UAV inspection system in the market generally has short endurance power time, high flight operation requirements, low degree of autonomous flight, low accuracy of intelligent identification, slow generation of inspection reports, and other problems. In view of these shortcomings, this paper designs an intelligent inspection system based on self-developed UAVs, including autonomous planning of inspection paths, sliding film control algorithms, mobile inspection schemes and intelligent fault diagnosis. In the first stage, basic data such as latitude, longitude, altitude, and the length of the cross-arms are obtained from the cloud database of the power grid, while the lateral displacement and vertical displacement during the inspection drone operation are calculated, and the inspection flight path is generated independently according to the inspection type. In the second stage, in order to make the UAV’s flight more stable, the reference-model-based sliding mode control algorithm is introduced to improve the control performance. Meanwhile, during flight, the intelligent UAV uploads the captured photos to the cloud in real time. In the third stage, a mobile inspection program is designed in order to improve the inspection efficiency. The transfer of equipment is realized in the process of UAV inspection. Finally, to improve the detection accuracy, a high-precision object detector is designed based on the YOLOX network model, and the improved model increased the mAP0.5:0.95 metric by 2.22 percentage points compared to the original YOLOX_m for bird’s nest detection. After a large number of flight verifications, the inspection system designed in this paper greatly improves the efficiency of power inspection, shortens the inspection cycle, reduces the investment cost of inspection manpower and material resources, and successfully fuses the object detection algorithm in the field of high-voltage power transmission lines inspection.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3