Study on the Characterization of Physical, Mechanical, and Mildew Resistance Properties of Enzymatically Treated Bamboo Fiber-Reinforced Polypropylene Composites

Author:

Meng Xun1,Hu Fu1,Liu Baoyu2,Cao Yan2,Xu Hailong2,Li Lifen13,Yu Liping1

Affiliation:

1. College of Forestry, Guizhou University, Guiyang 550025, China

2. Special and Key Laboratory for Development and Utilization of Guizhou Superior Bio-Based Materials, Guizhou Minzu University, Guiyang 550025, China

3. International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China

Abstract

The enhancement of the physical and mechanical properties and the anti-mildew performance of wood–plastic composites are of great significance for broadening their application field. In this research, bamboo fibers underwent treatments with safe, environmentally friendly bio-enzymes. Subsequently, a bamboo–plastic composite (BPC) was developed using the modified bamboo fibers and polyethylene. The effects of biological enzymatic treatments on the surface free energy, the chemical composition of the bamboo fibers, water resistance, thermal stability, bending performance, impact performance, and anti-mildew performance of the BPC samples were analyzed. This study revealed that treating bamboo powder with bio-enzymes (xylanase, lipase, laccase, pectinase, hemicellulase, or amylase) decreased the surface free energy and the polar components of the bamboo fibers while improving the surface O/C atomic ratio of the bamboo fibers. These enzyme treatments enhanced the water resistance, bending performance, and anti-mildew performance of the BPC samples. However, on the whole, the thermal stability of the composites decreased. Particularly, after hemicellulase treatment, the composites had the lowest water absorption, reflecting a decrease of 68.25% compared to the control group. With xylanase modification, the 24 h water absorption thickness swelling rate of the composites was the lowest, reflecting a decrease of 71.27% compared to the control group. After pectinase modification, the static bending strength and elastic modulus of the prepared composites were the highest, with an increase of 15.45% and 13.31%, respectively, compared to the unmodified group. After xylanase modification, the composites exhibited the best anti-mildew effect, with an anti-mold effectiveness of 74.67%. In conclusion, bio-enzyme treatments can enhance the physical and mechanical properties and anti-mildew performance of BPCs. This research provides a theoretical foundation for the preparation of high-performance wood–plastic composites.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guizhou Province

International Joint Research Center for Biomass Materials

111 Project

Guizhou Provincial Department of Human Resources and Social Security high-level talent innovation and entrepreneurship project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3