Sex-Inclined Piwi-Interacting RNAs in Serum Exosomes for Sex Determination in the Greater Amberjack (Seriola dumerili)

Author:

Deng Qiuxia123,Zhao Na12,Ru Xiaoying2,Hao Ruijuan12,Zhang Bo12ORCID,Zhu Chunhua123

Affiliation:

1. Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China

3. Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China

Abstract

The greater amberjack (Seriola dumerili) is a gonochoristic fish with no sexual dimorphism in appearance, making sex identification difficult. Piwi-interacting RNAs (piRNAs) function in transposon silencing and gametogenesis and are involved in various physiological processes, including sex development and differentiation. Exosomal piRNAs can be indicators for the determination of sex and physiological status. In this study, four piRNAs were differentially expressed in both serum exosomes and gonads between male and female greater amberjack. Three piRNAs (piR-dre-32793, piR-dre-5797, and piR-dre-73318) were significantly up-regulated and piR-dre-332 was significantly down-regulated in serum exosomes and gonads of male fish, compared to female fish, consistent with the serum exosomal results. According to the relative expression of four marker piRNAs derived from the serum exosomes of greater amberjack, the highest relative expression of piR-dre-32793, piR-dre-5797, and piR-dre-73318 in seven female fish and that of piR-dre-332 in seven male fish can be used as the standard for sex determination. The method of sex identification can ascertain the sex of greater amberjack by blood collection from the living body, without sacrificing fish. The four piRNAs did not show sex-inclined expression in the hypothalamus, pituitary, heart, liver, intestine, and muscle tissue. A piRNA–target interaction network involving 32 piRNA-mRNA pairs was generated. Sex-related target genes were enriched in sex-related pathways, including oocyte meiosis, transforming growth factor-beta signaling pathway, progesterone-mediated oocyte maturation, and gonadotropin releasing hormone signaling pathway. These results provide a basis for sex determination in greater amberjack and improve our understanding of the mechanisms underlying sex development and differentiation in the species.

Funder

the Fund of Southern Marine Science and Engineering Guangdong Laboratory

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3