SOXC Transcription Factors as Diagnostic Biomarkers and Therapeutic Targets for Arthritis

Author:

Ahmed Emad A.12ORCID,Alzahrani Abdullah M.1

Affiliation:

1. Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia

2. Lab of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt

Abstract

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common disorders that disrupt the quality of life of millions of people. These two chronic diseases cause damage to the joint cartilage and surrounding tissues of more than 220 million people worldwide. Sex-determining region Y-related (SRY) high-mobility group (HMG) box C, SOXC, is a superfamily of transcription factors that have been recently shown to be involved in various physiological and pathological processes. These include embryonic development, cell differentiation, fate determination, and autoimmune diseases, as well as carcinogenesis and tumor progression. The SOXC superfamily includes SOX4, SOX11, and SOX12, all have a similar DNA-binding domain, i.e., HMG. Herein, we summarize the current knowledge about the role of SOXC transcription factors during arthritis progression and their potential utilization as diagnostic biomarkers and therapeutic targets. The involved mechanistic processes and signaling molecules are discussed. SOX12 appears to have no role in arthritis, however SOX11 is dysregulated and promotes arthritic progression according to some studies but supports joint maintenance and protects cartilage and bone cells according to others. On the other hand, SOX4 upregulation during OA and RA was documented in almost all studies including preclinical and clinical models. Molecular details have indicated that SOX4 can autoregulate its own expression besides regulating the expression of SOX11, a characteristic associated with the transcription factors that protects their abundance and activity. From analyzing the currently available data, SOX4 seems to be a potential diagnostic biomarker and therapeutic target of arthritis.

Funder

King Salman center For Disability Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference48 articles.

1. Cartilage damage in osteoarthritis and rheumatoid arthritis—Two unequal siblings;Pap;Nat. Rev. Rheumatol.,2015

2. Male development of chromosomally female mice transgenic for Sry;Koopman;Nature,1991

3. Sox proteins: Regulators of cell fate specification and differentiation;Kamachi;Development,2013

4. LncRNA PART1 modulates chondrocyte proliferation, apoptosis, and extracellular matrix degradation in osteoarthritis via regulating miR-373-3p/SOX4 axis;Zhu;Eur. Rev. Med. Pharmacol. Sci.,2019

5. ROS/TGF-β signal mediated accumulation of SOX4 in OA-FLS promotes cell senescence;Ye;Exp. Gerontol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3