Stimulation of Chondrogenesis in a Developmental Model of Endochondral Bone Formation by Pulsed Electromagnetic Fields

Author:

Littman Jake1ORCID,Aaron Roy K.1ORCID

Affiliation:

1. Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA

Abstract

Notable characteristics of the skeleton are its responsiveness to physical stimuli and its ability to remodel secondary to changing biophysical environments and thereby fulfill its physiological roles of stability and movement. Bone and cartilage cells have many mechanisms to sense physical cues and activate a variety of genes to synthesize structural molecules to remodel their extracellular matrix and soluble molecules for paracrine signaling. This review describes the response of a developmental model of endochondral bone formation which is translationally relevant to embryogenesis, growth, and repair to an externally applied pulsed electromagnetic field (PEMF). The use of a PEMF allows for the exploration of morphogenesis in the absence of distracting stimuli such as mechanical load and fluid flow. The response of the system is described in terms of the cell differentiation and extracellular matrix synthesis in chondrogenesis. Emphasis is placed upon dosimetry of the applied physical stimulus and some of the mechanisms of tissue response through a developmental process of maturation. PEMFs are used clinically for bone repair and have other potential clinical applications. These features of tissue response and signal dosimetry can be extrapolated to the design of clinically optimal stimulation.

Funder

The Miriam Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3