Evolutionary Patterns of the Chloroplast Genome in Vanilloid Orchids (Vanilloideae, Orchidaceae)

Author:

Kim Young-Kee1,Cheon Se-Hwan1ORCID,Hong Ja-Ram1,Kim Ki-Joong1ORCID

Affiliation:

1. Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea

Abstract

The Vanilloideae (vanilloids) is one of five subfamilies of Orchidaceae and is composed of fourteen genera and approximately 245 species. In this study, the six new chloroplast genomes (plastomes) of vanilloids (two Lecanorchis, two Pogonia, and two Vanilla species) were decoded, and then the evolutionary patterns of plastomes were compared to all available vanilloid plastomes. Pogonia japonica has the longest plastome, with 158,200 bp in genome size. In contrast, Lecanorchis japonica has the shortest plastome with 70,498 bp in genome size. The vanilloid plastomes have regular quadripartite structures, but the small single copy (SSC) region was drastically reduced. Two different tribes of Vanilloideae (Pogonieae and Vanilleae) showed different levels of SSC reductions. In addition, various gene losses were observed among the vanilloid plastomes. The photosynthetic vanilloids (Pogonia and Vanilla) showed signs of stage 1 degradation and had lost most of their ndh genes. The other three species (one Cyrotsia and two Lecanorchis), however, had stage 3 or stage 4 degradation and had lost almost all the genes in their plastomes, except for some housekeeping genes. The Vanilloideae were located between the Apostasioideae and Cypripedioideae in the maximum likelihood tree. A total of ten rearrangements were found among ten Vanilloideae plastomes when compared to the basal Apostasioideae plastomes. The four sub-regions of the single copy (SC) region shifted into an inverted repeat (IR) region, and the other four sub-regions of the IR region shifted into the SC regions. Both the synonymous (dS) and nonsynonymous (dN) substitution rates of IR in-cooperated SC sub-regions were decelerated, while the substitution rates of SC in-cooperated IR sub-regions were accelerated. A total of 20 protein-coding genes remained in mycoheterotrophic vanilloids. Almost all these protein genes show accelerated base substitution rates compared to the photosynthetic vanilloids. Two of the twenty genes in the mycoheterotrophic species faced strong “relaxed selection” pressure (p-value < 0.05).

Funder

National Institute of Biological Resources

Ministry of Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference81 articles.

1. The number of known plants species in the world and its annual increase;Christenhusz;Phytotaxa,2016

2. Merckx, V. (2013). Taxonomy and Classification BT-Mycoheterotrophy: The Biology of Plants Living on Fungi, Springer.

3. An updated classification of Orchidaceae;Chase;Bot. J. Linn. Soc.,2015

4. Flora of Korea Editorial Committee, and Park, C.-W. (2007). The Genera of Vascular Plants of Korea, Academy Publishing.

5. Flora of China: Orchidaceae;Chen;Chen XQ, Wood JJ,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3