Electrosprayed Stearic-Acid-Coated Ethylcellulose Microparticles for an Improved Sustained Release of Anticancer Drug

Author:

Ji Yuexin1,Zhao Hua2,Liu Hui1,Zhao Ping1,Yu Deng-Guang1ORCID

Affiliation:

1. School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China

2. Medical School, Quzhou College of Technology, No. 18 Jiangyuan Road, Quzhou 324000, China

Abstract

Sustained release is highly desired for “efficacious, safe and convenient” drug delivery, particularly for those anticancer drug molecules with toxicity. In this study, a modified coaxial electrospraying process was developed to coat a hydrophobic lipid, i.e., stearic acid (SA), on composites composed of the anticancer drug tamoxifen citrate (TC) and insoluble polymeric matrix ethylcellulose (EC). Compared with the electrosprayed TC-EC composite microparticles M1, the electrosprayed SA-coated hybrid microparticles M2 were able to provide an improved TC sustained-release profile. The 30% and 90% loaded drug sustained-release time periods were extended to 3.21 h and 19.43 h for M2, respectively, which were significantly longer than those provided by M1 (0.88 h and 9.98 h, respectively). The morphology, inner structure, physical state, and compatibility of the components of the particles M1 and M2 were disclosed through SEM, TEM, XRD, and FTIR. Based on the analyses, the drug sustained-release mechanism of multiple factors co-acting for microparticles M2 is suggested, which include the reasonable selections and organizations of lipid and polymeric excipient, the blank SA shell drug loading, the regularly round shape, and also the high density. The reported protocols pioneered a brand-new manner for developing sustained drug delivery hybrids through a combination of insoluble cellulose gels and lipid using modified coaxial electrospraying.

Funder

Quzhou Science and Technology Bureau

the Natural Science Foundation of China

the Shanghai Sailing Program

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3