Design and Evaluation of Liposomal Sulforaphane-Loaded Polyvinyl Alcohol/Polyethylene Glycol (PVA/PEG) Hydrogels as a Novel Drug Delivery System for Wound Healing

Author:

Hemati Hamide1,Haghiralsadat Fateme23,Hemati Mahdie24,Sargazi Ghasem5ORCID,Razi Nastaran26

Affiliation:

1. Department of Biology, Faculty of Sciences, Yazd University, Yazd P.O. Box 81195741, Iran

2. Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd P.O. Box 89195999, Iran

3. Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd P.O. Box 8916188635, Iran

4. Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd P.O. Box 8916188635, Iran

5. Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam P.O. Box 7661713669, Iran

6. Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran P.O. Box 1477893855, Iran

Abstract

Hydrogel scaffold has been widely applied as drug delivery systems for treating skin injuries. However, the poor drug loading and rapid drug release of hydrogel restricted their application. In the current study, we present a nanoliposome containing sulforaphane (SF) as a nano-drug delivery system that is encapsulated within the scaffold hydrogel system to overcome these limitations and improve wound healing. The hydrogel substrate consisting of 10% polyvinyl alcohol (PVA)/5% polyethylene glycol 400 (PEG400) was prepared by the freeze–thaw method, and the nanoliposomal system was manufactured by the thin film hydration method at different molar ratios of cholesterol: SPC: DPPC: DSPE-PEG2000. The nanoliposome and hydrogel system was characterized by physicochemical analyses. The findings achieved from the optimization of the sulforaphane-loaded nanoliposome (SFNL) displayed an increase in the molar ratio of SPC, leading to a higher entrapment efficiency and a gradual release profile. Narrow size distribution, optimal electrical charge, and the lack of molecular interactions between SF and nanoliposome components in the FTIR analysis make SFNL a suitable drug delivery system for the wound healing process. The obtained SFNL-encapsulated freeze–thawed hydrogel system has sufficient and specific swelling ability at different pH values and increased mechanical strength and elongation. Additionally, the release pattern of SFNL at different pH values showed that the release of SF from liposomes depends on the pH value of the environment and accelerates in line with decreasing pH values. Encapsulation of nanoliposomal SF in the hydrogel structure provides a sustained release pattern of SF compared to its free form and increased as the pH environments continued to raise. The cytotoxicity and cell uptake of SFNL-loaded hydrogels against human skin fibroblasts (HFF cell line) were investigated. The in vitro analyses displayed that the toxicity properties of SF and SFNL were dose-dependent, and SFNL exhibited lower toxicity compared to free SF. Furthermore, the proper cell compatibility of the prepared hydrogel against the HFF cell line was confirmed by the MTT assay. These findings imply that the hydrogel scaffold loaded with SFNL may have wound-healing potential.

Funder

Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3