A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering

Author:

Bahrami Peyman,Sahari Moghaddam Farzan,James Lesley A.ORCID

Abstract

Numerical models can be used for many purposes in oil and gas engineering, such as production optimization and forecasting, uncertainty analysis, history matching, and risk assessment. However, subsurface problems are complex and non-linear, and making reliable decisions in reservoir management requires substantial computational effort. Proxy models have gained much attention in recent years. They are advanced non-linear interpolation tables that can approximate complex models and alleviate computational effort. Proxy models are constructed by running high-fidelity models to gather the necessary data to create the proxy model. Once constructed, they can be a great choice for different tasks such as uncertainty analysis, optimization, forecasting, etc. The application of proxy modeling in oil and gas has had an increasing trend in recent years, and there is no consensus rule on the correct choice of proxy model. As a result, it is crucial to better understand the advantages and disadvantages of various proxy models. The existing work in the literature does not comprehensively cover all proxy model types, and there is a considerable requirement for fulfilling the existing gaps in summarizing the classification techniques with their applications. We propose a novel categorization method covering all proxy model types. This review paper provides a more comprehensive guideline on comparing and developing a proxy model compared to the existing literature. Furthermore, we point out the advantages of smart proxy models (SPM) compared to traditional proxy models (TPM) and suggest how we may further improve SPM accuracy where the literature is limited. This review paper first introduces proxy models and shows how they are classified in the literature. Then, it explains that the current classifications cannot cover all types of proxy models and proposes a novel categorization based on various development strategies. This new categorization includes four groups multi-fidelity models (MFM), reduced-order models (ROM), TPM, and SPM. MFMs are constructed based on simplifying physics assumptions (e.g., coarser discretization), and ROMs are based on dimensional reduction (i.e., neglecting irrelevant parameters). Developing these two models requires an in-depth knowledge of the problem. In contrast, TPMs and novel SPMs require less effort. In other words, they do not solve the complex underlying mathematical equations of the problem; instead, they decouple the mathematical equations into a numeric dataset and train statistical/AI-driven models on the dataset. Nevertheless, SPMs implement feature engineering techniques (i.e., generating new parameters) for its development and can capture the complexities within the reservoir, such as the constraints and characteristics of the grids. The newly introduced parameters can help find the hidden patterns within the parameters, which eventually increase the accuracy of SPMs compared to the TPMs. This review highlights the superiority of SPM over traditional statistical/AI-based proxy models. Finally, the application of various proxy models in the oil and gas industry, especially in subsurface modeling with a set of real examples, is presented. The introduced guideline in this review aids the researchers in obtaining valuable information on the current state of PM problems in the oil and gas industry.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference209 articles.

1. Numerical Modeling;Larson,2005

2. Physical Modelling vs. Numerical Modelling: Complementarity and Learning

3. Introduction to Numerical Methods;Ferziger,2002

4. Surrogate-Based Modeling and Optimization: Applications in Engineering;Koziel,2013

5. Numerical tuning in reservoir simulation: it is worth the effort in practical petroleum applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3