Constitutive Equation and Characterization of the Nickel-Based Alloy 825

Author:

Xu HuiORCID,Li Yugui,Li Huaying,Wang JinbinORCID,Liu GuangmingORCID,Song Yaohui

Abstract

In this contribution, a series of isothermal compression tests for the 825 nickel-based alloy were performed using a Gleeble-3800 computer-controlled thermomechanical simulator at the compression temperature range of 850 °C to 1150 °C and the strain rate range of 0.14 s−1 to 2.72 s−1. The hot deformation equation of the alloy is derived from the piecewise model based on the theory of work hardening-dynamic recovery and dynamic recrystallization (DRX), respectively. Comparisons between the predicted and experimental data indicate that the proposed constitutive model had a highly accurate prediction. The deformation rate and temperature effect were associated with microstructural change, and the evolution of the microstructure was analyzed through electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The dislocation densities of the alloy at the deformation of 850 °C and 2.72 s−1 is higher than at the other deformation, the higher dislocation density is the higher stored energy and the higher degree of DRX. As well, two types of DRX nucleation mechanisms have been identified: discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX). Changes in grain boundary have significant effect on the DRX nucleation of the alloy, twin boundaries act as potential barriers limiting dislocation slip and motion and eventually leading to the accumulation of dislocation during plastic deformation. This study identified that the major contribution which results in the growth of new twins in DRX grains is the new boundary of Σ3 twins.

Funder

Key Core Technology and Common Technology Research and Development Project of Shanxi Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3