Author:
Qin Junwei,Chen Xiaohua,Wang Yanlin,Zhu Yuzhi,Pan Shiwei,Zhou Wei,Chen Mingwen,Wang Zidong
Abstract
Continuous innovation in the design of metallic materials is essential for further progress in aerospace, automotive, construction, and shipping. Fine grain strengthening is considered to increase the strength of metals without losing plasticity. However, many fabrication techniques are restricted to very small sizes. Recently, the introduction of in situ nanoparticles with coherent or semi-coherent interfaces in the metallic matrix achieves simultaneous enhancement of the strength and ductility of metallic materials. In this review, the focus is on fabrication techniques and the formation mechanism of nanoparticles and nanoclusters in metal materials. The effects of nanoparticles on grain refinement, inhibiting segregation, second phase, and inclusion refinement are discussed, and the mechanism of simultaneous improvement in the strength and ductility of nanostructured metal materials is briefly covered. Finally, we provide a summary and outline of the possible direction for further advances in this research field.
Funder
Academic and Technical Leaders of Major Disciplines in Jiangxi Province
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献